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Abstract
The transmission and phase properties of electron transport through a quantum dot (QD) with
variable coupling to a third-terminal probe are investigated analytically for the case of the QD
connected directly to source and drain reservoirs and when the QD is embedded in one arm of
an Aharonov–Bohm (AB) ring. Using the tight-binding model, explicit analytical expressions
of the transmission through the QD for each case are given. Expressions for the conductance
with coupling to the third terminal, which breaks unitarity and phase-locking, are also given. It
is shown that in a three-terminal interferometer the zero of the Fano resonance in the
transmission moves off the real energy axis for finite values of the coupling parameter. The zero
orbits around the pole in the complex energy plane as a function of magnetic flux through the
ring, and can be returned to the real energy axis unless the coupling parameter exceeds a critical
value. With the QD embedded in one arm of the AB ring, the electron transmission and the
transmission phase, and the phase of the AB oscillations, are described in relation to the degree
of coupling to the third-terminal probe which opens the interferometer. By tuning the degree of
coupling to the probe, it is shown that the phase of the AB oscillations can be made to match the
intrinsic phase of the QD, facilitating experimental characterization of the phase response of the
QD.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dots (QDs), or artificial atoms [1], when fabricated as
a component of a meso-electronic system [2, 3] have important
properties which affect their applications in nanotechnology
devices. QDs have also been identified as prime candidates for
applications in quantum computing and quantum information
processing [4, 5]. It is well known that the quasi-bound state
energy levels of the QD support transmission resonances of the
Breit–Wigner form when the QD is part of a one-dimensional
conductor. Fano-type resonances, characterized by an adjacent
zero-pole pair, occur when the QD is inserted in one arm
of an Aharonov–Bohm (AB) ring [6]. The continuum path
through the reference arm of the ring provides interference
with the electron wave through the arm containing the QD,
resulting in the zero or one transmission states at particular
electron energy values. The transmission through the QD has

been shown in this configuration to retain phase coherence,
as demonstrated through the visibility of AB oscillations
in the transmission as a function of magnetic flux applied
perpendicularly the ring [7]. However, the exact transmission
phase shift produced by the QD in the AB ring is not easily
obtained by direct measurement. In a two-terminal device, the
Onsager relations [8] of time-reversal symmetry and current
conservation (unitarity) constrain the transmission phase to
values of 0 or π . Measurements of the transmission phase
in a two-terminal device (as determined by the phase of the
AB oscillations) show flat phase dependence as a function of
energy, except at the position of the resonance where the phase
abruptly jumps by π [9, 10]. Thus, the true phase shift of
the transmission through the QD is masked in a two-terminal
device. However, if the two-terminal AB ring is ‘opened’
by coupling to additional terminals, the unitarity condition
is broken and it becomes possible in principle to extract
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meaningful phase information about the QD [9]. Analysis has
shown that the measurable transmission phase in this case only
matches the intrinsic phase of the QD under specific conditions
relating to exactly how the AB ring is opened [11, 12].
We present here a theoretically simpler means by which
the AB oscillation phase for an open ring can be tuned
to match the intrinsic phase of the QD. Other mechanisms
which have been postulated to contribute to the disruption of
unitarity include QD inter-level thermal excitation and inelastic
electron–phonon interactions [13].

We use a tight-binding model to analyze the transmission,
conductance and phase properties of two- and three-terminal
QDs connected to uniform conducting leads, or with the QD
embedded in one arm of an AB interferometer. The tight-
binding model has also been applied to transport analysis
through coupled QDs considered as components of a bio-
molecular structure such as DNA [14]. The resonant
transmission and phase properties of the electron transport
through the QDs and AB rings described here provide
additional theoretical understanding for these important
applications. We show how the transmission and phase
behavior through the QD varies with coupling to a third
terminal, both as a bare three-terminal QD in a one-
dimensional array (coupling through the reference arm of the
AB ring blocked), and when the QD is embedded in one
arm of the AB ring. It is seen that the zero of the Fano
resonance produced by the QD and the ring leaves the real
energy axis as coupling to the third terminal, Vd, is increased
from zero. Other recent research on the mesoscopic Fano effect
shows that for the case of imperfect coupling between the arms
of the AB interferometer the transmission consists of mixed
modes, which inhibit the complete destructive interference
characteristic of the Fano resonance zero [15]. In the research
presented here, however, we focus on the case of complete
coupling between the AB arms.

When the ring is opened by coupling to the third terminal,
the sudden phase jump of π is seen to soften. An expression for
the transmission amplitude through the QD is t = √

TQD eiαQD ,
which is a complex quantity. The intrinsic phase of the QD,
αQD, can be extracted from measurements of the phase of the
AB oscillations with an open ring [9]. In our analysis, the
intrinsic phase behavior of the QD (αQD) is found to match the
phase of the AB oscillations by uniquely tuning the coupling
of the AB ring to the third terminal, thus providing a possible
novel method of experimentally determining αQD.

In addition, the behavior of the Fano zero and pole in the
complex energy plane as a function of magnetic flux through
the ring is analyzed. The zero orbits the pole with a periodicity
equal to the flux quantum. In the case of an open ring,
however, due to the zero-pole Fano dipole pair being shifted
away from the real energy axis, the pole crosses the axis at
values of flux which depart from the nominal zero-crossing
values of n�0/2 (n = 0, 1, 2, . . .), where �0 = h/e is
the elementary flux quantum [16]. For values of flux which
position the Fano zero in the positive complex energy half-
plane, we can move the zero back across the real energy axis
by sufficiently increasing the value of Vd. Experiments have
shown a slight flux dependence of the transmission resonances

and the phase of the AB oscillations [17, 18]. However, this
effect is insignificant if the area of the QD is small compared
to the ring area (as assumed here), or for the case of weak
fields [19].

Electron–electron interactions can add complicating
features to the resonance and phase behavior of QDs in
AB rings. However, as is customary for a simple lattice
model, using the tight-binding approximation, electron–
electron interactions are ignored or incorporated into the
onsite energy of the QD [20]. The model then becomes a
single-electron scattering case, which generally applies near
a Coulomb blockade resonance where the interaction effect
only provides a shift of the QD energy. Our focus is
in this regime. We also assume the temperature, T →
0 K, for which case Aharony et al have shown that the
transmission resonance is completely determined according
to non-interaction contributions [21, 22]. Kondo correlations
between the unpaired spin of a single electron in the QD and
the electrons in the leads can produce enhanced conduction
in the valley between two Coulomb blockade peaks. These
correlations have also been seen to diminish the phase lapse
behavior of the QD across the Kondo valley [23]. Although our
model is limited to discussions in which there is no electron–
electron interaction, it is well known that the single-electron
picture gives a qualitative and correct description of Fano
resonances in atomic systems, and may be substantiated by
using a self-consistent approximation.

It is well known that for a nano-ring it is difficult
to separate the effect of the measurement probes from the
measurement itself. Our theoretical model also demonstrates
what kind of information may be extracted from three-terminal
measurements. The analytical model of the QD and AB ring is
presented next, followed by the transmission analysis and the
phase behavior of the system.

2. Model of the QD and AB ring

We consider a special interferometer with an embedded QD in
one arm and connected to a plunger (or probing) wire defining
the outgoing reservoir (see figure 1). Besides current leads
1 and 2, the probing lead is connected with the QD directly
in order to extract information regarding waves scattering on
the QD. We analyze the system under consideration with a
tight-binding model, which is equivalent to the discretized
Schrödinger equation [24]. Numerous authors have employed
this approximation to the Schrödinger equation in order to
obtain analytical solutions for mesoscopic systems. Denoting
the wavefunction on site n by ψn , the Schrödinger equation in
the tight-binding approximation is

−
∑

Vn,mψm + εnψn = Eψn, (1)

where the sum runs over the nearest neighbors of n, E is the
electron energy, and εn is the site energy. The parameters,
Vn,m , are overlap integrals, or coupling parameters, involving
the overlap of the single-site, atomic-like wavefunctions from
sites m and n with the single-site potential of site n. In the
homogeneous leads, the coupling parameters are all set to
V0 = 1.0, which we use throughout the discussion as a unit
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Figure 1. Schematic diagram of the quantum dot embedded in the
AB ring with relevant coupling parameters between sites. V1 sets the
confinement of the QD, Vd allows coupling to the third terminal, and
Vr provides coupling through the reference arm of the ring.

of energy. It is assumed that the electron–electron interaction
is neglected in our calculations.

For the one-dimensional periodic potential lattice of the
leads, the electron wavefunction is of the form ψn = A eiθn +
B e−inθ , where the index n runs over all the sites of the perfect
conductors and A and B are arbitrary amplitudes. Let us
consider an incoming wavefunction only in the first wire

ψn = eiθn + r11 e−inθ , n � −1, (2)

where θ = ka, a is the distance between the sites, k is the
wavevector that is connected with the energy by the dispersion
relation, E = −2V0 cos ka, and r11 is the reflection amplitude.
The incoming wave produces outgoing waves in the second
lead

ψn = t21 einθ , n � 1, (2.1)

and in the third lead

ψm = t31 eimθ , m � 1, (2.2)

where t21 and t31 are the transmission amplitudes into terminal
2 or 3 from the first lead. The site energies, εn, are set to zero
for all sites except for the QD at m = 0, which has site energy
ε0.

The flux through the ring produces a phase difference
between the path through the QD and the path through
the reference arm by the AB effect [25]. We choose a
gauge in which the coupling parameter for each segment
of the lower arm is modified as V1 → V1 e±iϕ , and the
reference arm coupling parameter becomes Vr e±2iϕ (‘+’
for counterclockwise transits around the ring and ‘−’ for
clockwise transits). The phase, ϕ, is related to the magnetic
flux, �, by ϕ = π�/(2�0). Wavefunction coupling to the
third terminal is allowed for Vd �= 0.

Applying equation (1) to the three sites around the AB ring
and also to site m = 1 of the third terminal, we obtain the
following three linear equations which are subsequently solved
simultaneously for the complex reflection and transmission

amplitudes:

V0r11 − Vr e−2iϕ+iθ t21 − V1V0

Vd
eiϕ t31 = −V0,

− Vr e2iϕ+iθr11 + V0t21 − V1V0

Vd
e−iϕ t31 = Vr e2iϕ−iθ ,

− V1r11 e−iϕ+iθ − V1t21 eiϕ+iθ −
(

Vd eiθ − (ε0 − E)V0

Vd

)
t31

= V1 e−iϕ−iθ .

(3)

An explicit solution for unknown amplitudes may be found
by inverting the matrix of coefficients of the reflection and
transmission amplitudes on the left side of equation (3). The
requirement of current conservation provides a check on the
results through the relation

|r11|2 + |t21|2 + |t31|2 = 1. (4)

In the same way we can find all the transmission ti j and
reflection ri j amplitudes of the three terminal system. We then
determine the probabilities: Ti j = |ti j |2 and Ri j = |ri j |2,
which let us define the conductance of the network, as outlined
below. Chemical potentials, μi , are applied to the nodes to
produce the currents Ii in the leads [26]:

Ii = 2e

h

[

(1 − Rii )μi −
∑

j �=i

Ti jμ j

]

. (5)

To find the non-local conductance we need to consider current
conservation, 1 − Rii = ∑

j �=i Ti j . For our purposes here, we
set the current between nodes 1 and 2 as I1 = −I2. Firstly, we
will be interested in how to measure the potential drop between
nodes 1 and 2: V12 = (μ1 − μ2)/e = I1/G12,12, when the net
current flowing to node 3 is considered negligible (I3 = 0).
The conductance G12,12 is for the case of current from node 1
to node 2 (first set of subscripts), with the potential drop also
measured between nodes 1 and 2 (second set of coefficients),
using Büttiker’s notation [26]. We obtain an expression for
this conductance in terms of the multi-terminal transmission
coefficients as follows. Using equation (5), we write

I ≡ I1 = 2e

h
[(T12 + T13)μ1 − T12μ2 − T13μ3] = −I2

= −2e

h
[(T21 + T23)μ2 − T21μ1 − T23μ3] . (6)

To eliminate μ3 we use I3 = 0 to obtain μ3 =
(T31μ1 + T32μ2)/(T31 + T32). From here, there is more than
one equivalent way to proceed; we choose to substitute
the above expression for μ3 into the expression for I2 in
equation (6). Then, without loss of generality [27], we set
μ2 = 0 to obtain I = I1 = −I2 = G12,12(μ1/e), where

G12,12 = 2e2

h

(
T21 + T23T31

T31 + T32

)
. (7)

The potential drop between nodes 3 and 2 is defined by the
conductance

G12,32 = 2e2

h

(
T21 + T32 + T23T31

T31

)
, (8)
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Figure 2. Transmission as a function of energy through a
two-terminal QD (solid curve), a three-terminal QD (Vd = 0.3;
dotted curve), and a two-terminal QD embedded in an AB ring
(Vd = 0, Vr = 0.3; dashed curve).

obtained by a similar derivation. If coupling to the probing
terminal 3 is blocked (Vd = 0), the conductance expressions
above reduce to the familiar Landauer—Büttiker relation: G =
2e2

h T21.
It is well known that in a magnetic field, current

conservation and time-reversal invariance reads

Ti j(�) = Tji(−�). (9)

We will discuss in the next sections the behavior of the
transmissions and conductance in an AB ring. Explicit,
analytical solutions of the system of equations in (3) are
presented in the following section for the case of a two-terminal
QD, a three-terminal QD, the QD in a two-terminal AB ring,
and the QD in a three-terminal AB ring.

3. Analytical results and discussion of the
transmission

3.1. Two- or three-terminal QD

The simplest case is the two-terminal QD in a one-dimensional
array, which is represented by setting Vd = 0 and Vr = 0 in
figure 1. In this case, the transmission amplitude through the
dot is given as

t21 =
ig

√
4V 2

0 − E2

E − ε0
1−v2 + ig

√
4V 2

0 − E2
, (10)

where g = v2/(1 − v2) and v = V1/V0. A plot of the
transmission through the QD as a function of energy is shown
in figure 2 (solid curve). For all the graphical results presented
below, V1 = 0.3 for the QD confinement, and Vr = 0.3 when
the QD is embedded in the AB ring. The site energy of the QD
is taken as ε0 = 0, which positions the resonance in the center
of the allowed energy band. The external magnetic flux is set
to zero, except where specified as a variable.

The coupling of the resonance with the propagating states
is defined by parameter v. When the coupling parameter

is small, v � 1, the expression in equation (10) can be
written approximately in the form of a standard Breit–Wigner
resonance,

t21(E) = i	

E − Ep + i	
. (11)

We find then the position of the resonance peak, Ep = ε0(1 −
ν2)−1, which lies close to ε0 for v � 1, or V1 � V0.
Here, 2	 is the full width at half maximum (FWHM) of the
resonance with the parameter 	 approximately given as 	 ∼=
g
√

4V 2
0 − E2

p .

We next consider the effect of adding a third terminal to
the QD, which is represented by allowing Vd �= 0, but still
holding Vr = 0. The transmission amplitude for this case is
given by

t21 =
ig′(ν/ν ′)2

√
4V 2

0 − E2

E − ε0
1−v′2 + ig′

√
4V 2

0 − E2
, (12)

where g′ = v′2/(1 − v′2), v′ =
√
v2 + v2

d/2, vd = Vd/V0

and is also plotted in figure 2 (dotted line). (Similarly, the
transmission amplitude through the third terminal of the QD is
simply related to t21 by t31 = t21(Vd/V1).) The position of the
resonance peak in the transmission through the three-terminal
QD is now given by

E ′
p = ε0

1 − (V 2
1 + V 2

d /2)/V 2
0

= ε0

1 − (ν2 + ν2
d/2)

. (13)

The width of the resonance may be found by perturbation. We
shall discuss a simple case when the coupling to the third lead
is weak: vd � 1, or Vd � V0. With non-zero coupling
to the third terminal, Vd �= 0, the resonance peak is shifted
slightly further to the outside of ε0 (for ε0 �= 0), compared to
the two-terminal case shown above. Not only is the position
shifted, but the amplitude of the resonance peak falls below
unity with non-zero Vd since there is then finite transmission
to the third terminal. The transmission resonance through the
three-terminal QD is no longer strictly of the Breit–Wigner
form shown in equation (11), but it can be written as

t21(E) = i(ν/ν ′)2	′

E − E ′
p + i	′ . (14)

The result of perturbation analysis gives the width of the

resonance approximately as 	′ ∼= g′
√

4V 2
0 − E ′2

p . Notice

that since v � ν ′ the imaginary part of the denominator of
equation (14) is now greater than the imaginary part of the
numerator. The increased imaginary part of the resonance pole
indicates an increased width of the resonance, which is related
to the shorter lifetime of the resonance state of the QD due
to leakage current into the open third terminal. We find that
the magnitude of the transmission to the second terminal at the
resonance peak for the three-terminal QD is

T21(E
′
p) = (ν/ν ′)4 = V 4

1

(V 2
1 + V 2

d /2)
2
< 1. (15)

4
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We see that the effect of adding the third terminal to the QD
changes the transmission dramatically: we can treat the effect
of the additional terminal as a source of inelastic processes
because the electrons that are transmitted to third lead lose their
phase coherence.

3.2. QD embedded in an AB ring

When coupling through the reference arm is allowed (Vr �=
0), the QD is effectively embedded into one arm of an
AB interferometer ring. In order to simplify notation,
from here on, T2 and t2 will represent the transmission and
transmission amplitude, respectively, from terminal 1 into
terminal 2. We first present the case of a two-terminal ring,
obtained by setting Vd = 0. The transmission amplitude is
then found to be

t2 = {2i sin θ [V 2
1 − e4iϕVr(E − ε0)]}{e2iθVrV

2
1 ( e6iϕ

+ e−2iϕ)/V0 + e2iϕ[2V 2
1 eiθ + (E − ε0)

×(V0 − e2iθV 2
r /V0)]}−1. (16)

Due to the additional reference arm path, interference between
the continuum modes and the quasi-bound state of the QD
shifts the form of the resonance from a Breit–Wigner to a Fano
resonance, with its zero-pole pair characteristics as seen in
figure 2 (dashed line). With the Fano resonances, the behavior
of the Fano zero becomes of primary interest to us. The
position of the resonance zero is easily obtained by solving
for the value of the energy, E0, which causes the numerator
of t2 to be zero. This is found from equation (16) to be
E0 = ε0 + e−4iϕV 2

1 /Vr. For zero flux (or, for 4ϕ = nπ, n =
0, 1, 2, . . .), the resonance zero always lies on the real energy
axis in a two-terminal AB ring. The phase behavior for each
transmission curve shown in figure 2 is presented in figure 5,
and is discussed below in section 4.

Next, we present the case of a three-terminal ring with
Vd �= 0. The expression for the full transmission amplitude
is now written as

t2 = {2i sin θ [V 2
1 − e4iϕVr(E − ε0 + eiθV 2

d /V0)]}
×{ e2iθVrV

2
1 ( e6iϕ + e−2iϕ)/V0 + e2iϕ[(2V 2

1 + V 2
d ) eiθ

− e3iθV 2
r V 2

d /V 2
0 + (E − ε0)(V0 − e2iθV 2

r /V0)]}−1. (17)

Plots of the transmission versus energy for various values of
coupling, Vd, to the third terminal are shown in figure 3.
Opening the ring, by allowing non-zero Vd, immediately shifts
the Fano zero off the real energy axis into the complex energy
plane (see both the dotted and dashed lines in figure 3).
However, for each value of Vd (up to a critical value described
below) there exist two values of magnetic flux for which
the Fano zero can again be positioned back on the real
energy axis. By setting the term in square brackets in the
numerator of equation (17) to zero, we obtain the following
two equations, which can be solved simultaneously to give
the energy, E0, and corresponding magnetic flux values which
force the transmission to be zero:

E0 = 2V 2
0

[
ε0 + (V 2

1 /Vr) cos 4ϕ
]

2V 2
0 − V 2

d

and E0 = ±2V0

√

1 − V 4
1 V 2

0

V 2
r V 4

d

sin2 4ϕ.

(18)

Figure 3. Transmission through the ring into the second terminal as a
function of energy, for a closed ring (Vd = 0, solid curve) and for
open rings (Vd = 0.3, dotted curve; Vd = 0.6, dashed curve). The
Fano zero lifts off the real energy axis for non-zero coupling to the
third terminal of the ring.

The two conditions in equation (18) follow from requiring
both the real and the imaginary parts of the numerator of
equation (17) to be zero. In the case with ε0 = 0, it is possible
to obtain simple, closed forms for E0 and the flux in terms of
the coupling parameters [16].

A critical value of Vd exists (V crit
d = V1

√
V0/Vr), which

is the maximum value for which there is the possibility of
placing the Fano zero on the real energy axis at any value of
flux. For the parameters used in this section (V0 = 1.0 and
V1 = Vr = 0.3), the critical value becomes V crit

d = √
0.3 ∼=

0.5477 [16]. In figure 4, we show the transmission T2 as a
function of electron energy (the left column) and contour plots
of the transmission amplitude in the complex energy plane (the
right column) with fixed magnetic flux �/�0 = 0.75 for three
different values of Vd = 0.3, 0.548 and 0.8. As Vd increases,
the Fano zero moves directly downward and crosses the real
energy axis at V crit

d . If Vd is increased beyond V crit
d , the Fano

zero passes into the negative complex energy half-plane and
there is no value of flux which can bring the Fano zero back to
the real energy axis.

4. Phase analysis of the transmission and AB
oscillation

4.1. Two- or three-terminal QD

For a two-terminal symmetric QD in a one-dimensional
periodic lattice (modeled in our analysis by setting Vr = 0
and Vd = 0), the unitary scattering matrix connecting the
transmission and reflection amplitudes on either side of the dot
can be written as S2 = ( t − 1 t

t t − 1

)
, where t is the transmission

amplitude from either direction, and is given by equation (10)
for the tight-binding model used in our calculations. The
reflection amplitude is r = t − 1. The condition of unitarity,
S−1

2 = S̃∗
2 (inverse equals conjugate transpose), requires in

general that |det(S2)|2 = 1, where det(S2) is the determinant
of matrix S2. Using the matrix form of S2 given above, and
expressing t as t = √

TQD eiαQD , we find det(S2) = − e2iαQD

5
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Figure 4. Transmission plots and contour plots of the transmission
amplitude in the complex energy plane for �/�0 = 0.75, showing
the Fano zero crossing the real energy axis at the critical value of the
coupling parameter, V crit

d = √
0.3 ∼= 0.548. For Vd > V crit

d , the Fano
zero passes into the negative complex energy half-plane, and cannot
be returned to the real energy axis for any value of magnetic flux.

and
√

TQD = cos(αQD). Thus, for this case, the intrinsic
phase of the QD can be obtained directly from the measured
transmission current, shown in figure 5 (solid curve), in which
the phase smoothly increases from −π/2 to π/2 across the
resonance. The expression,

√
TQD = cos(αQD), is equivalent

to TQD = Re(t), which holds for the general form of a Breit–
Wigner transmission resonance, equation (11), but not for the
Fano-type resonance which arises when the QD is embedded
in one arm of an AB ring. Allowing additional loss from
the QD by coupling to a third terminal only slightly modifies
the transmission phase (of terminal 2), as seen in figure 5 for
Vd = 0.3 (dotted curve). The phase of the transmission out
of the third terminal of the QD (when not embedded in the
AB ring) is identical to the transmission phase from the second
terminal, even though the transmission amplitudes themselves
differ, as shown in section 3.2 (t3 = t2Vd/V1).

4.2. QD embedded in a closed AB ring

When the QD is embedded in one arm of a two-terminal
AB ring, the resulting Fano resonance in the transmission
T2 is accompanied by a transmission phase shift which
shows a sharp phase jump of π for Vd = 0 (see dashed
curve in figure 5). Experimentally, this sudden phase jump
can be observed in the measurement of the phase of the
AB oscillations [7, 9]. Figure 6(a) shows the analytically

Figure 5. Transmission phase as a function of energy through a
two-terminal QD (solid curve), a three-terminal QD (Vd = 0.3;
dotted curve), and a two-terminal QD embedded in an AB ring
(Vd = 0, Vr = 0.3; dashed curve). The phase jumps abruptly by π
for the QD in one arm of the AB ring.

Figure 6. (a) Transmission as a function of magnetic flux for the
closed ring, showing the phase shift of the AB oscillations for energy
values on either side of the resonance. Solid curve, E = −0.3; dotted
curve, E = 0.0; dashed curve, E = 0.3. (b) Transmission and AB
oscillation amplitude and phase as a function of energy for the closed
ring. Solid curve, T2 versus E ; dotted curve, AB oscillation
amplitude; dashed curve, AB oscillation phase, showing the sharp
phase jump of π at the Fano resonance peak.

calculated AB oscillations at three specific energy values
across the resonance, and figure 6(b) plots the magnitude and
phase of the AB oscillations, along with the Fano transmission
resonance as a function of energy. The sharp phase jump of
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π in the AB phase at the resonance peak is clearly exhibited
in figure 6(b) (dashed curve). In our analytical results, the
complex transmission amplitude for the AB ring with the
embedded QD can be expressed as t2 = |t2| eiα2 , giving
the transmission phase as α2 = arctan[Im(t2)/Re(t2)]. The
explanation for the phase rigidity seen in the AB oscillations
can be understood by writing t2 as the sum of the transmissions
through the two arms of the AB ring: t2 = |tr| eiαr +|td| eiαd eiφ .
The subscripts ‘r’ and ‘d’ refer to the reference arm and to the
arm with the QD, respectively. The phasor, eiαd includes the
phase contribution of the QD, αQD. The phasor, eiφ , is the
contribution from the magnetic flux, �, where φ = 2π�/�0.
The transmission, T2 = |t2|2, is then sinusoidally dependent on
the flux:

T2 = |tr|2 + |td|2 + 2|tr||td| cos(αr − αd + φ). (19)

Current conservation and time-reversal symmetry lead to the
Onsager relation, which requires that the transmission must be
an even function of the flux: T2(�) = T2(−�) [27]. The only
way for this to be true in general is if αr − αd = 0, π , which is
seen analytically when the phase of the transmission through
the closed ring exhibits a sharp jump of π at the resonance
zero, as shown in figure 7 (solid curve). This phase rigidity of
the closed AB ring (Vd = 0) masks the intrinsic phase of the
QD, αQD, preventing its measurement via the phase of the AB
oscillations [7].

An analytical expression for the transmission through the
two-terminal ring showing its flux dependence is given in
equation (20) as T2 = |t2|2, where t2 is the transmission
amplitude from equation (16). The flux dependence of
equation (20) is more complicated than the result of the
ideal interferometric model given in equation (19), since
equation (19) assumes a single passage of the electron wave
through the device, while equation (20) takes into account
multiple (infinite) reflections from the QD scatterer and from
the input and output junctions of the AB ring [20].

T2 =
4 sin2 θ [V 2

1 + V 2
r (E − ε0)

2 − 2V 2
1 Vr(E − ε0) cosφ]

(V 2
1 Vr/V0)[(V 2

1 Vr/V0)4 cos2 φ + 2 cosφ(C + C∗)] + CC∗ .

(20)

Here, C is an energy-dependent factor; C = 2V 2
1 e−iθ + (E −

ε0)(V0 e−2iθ − V 2
r /V0). The transmission is seen to depend

upon factors of both cosφ and cos2 φ, with the periodicity
of the flux quantum (φ = 2π�/�0) being predominant at
energies away from the resonance. At the energy of the
resonance (E = ε0 = 0), for our results, the transmission of
equation (20) simplifies considerably to

T2 = 1
(
V 2

r /V 2
0

)
cos2 φ + 1

. (21)

Here, the AB oscillations are periodic with half the flux
quantum, and T2(φ) has minima at φ = 2π�/�0 = nπ
(for n an integer), as seen in figure 6(a) for E = 0 (dotted
curve). Experiments which measure the AB oscillations also
reveal a departure from a pure sinusoidal dependence of the

Figure 7. Transmission phase as a function of energy for the QD
embedded in an AB ring. The phase jump of π at the transmission
resonance zero (compare to figure 3) diminishes and softens as the
ring is opened with coupling to the third terminal. Vd = 0.0, 0.3, and
0.6 (solid, dotted, and dashed curves, respectively).

transmission on the flux, with the dominant flux periodicity
changing from �0 to �0/2 at the resonance [28].

Aharony et al [20, 21] demonstrate that if coherence
through the QD is assumed it is possible to indirectly extract
αQD from the transmission curve without opening the ring.
However, their method employs a non-trivial five-parameter fit
of the transmission under the condition of no flux-dependent
internal electron–electron interactions. Below, in section 4.4,
we show how to tune the three-terminal AB ring in order to
obtain αQD from the phase of the AB oscillations.

4.3. QD embedded in an open AB ring

In an open ring, the phase rigidity is removed, and the phase
factor, αr − αd ≡ β , can smoothly vary across the resonance.
As Vd increases from zero, allowing coupling and transmission
to the third channel, unitarity is broken and the abrupt phase
jump softens and decreases in magnitude [12, 21]. The
transmission phase curves showing this effect for Vd = 0.0,
0.3, and 0.6 are plotted in figure 7. In order to experimentally
extract the phase factor β , higher order harmonics of the flux
dependence, as seen in the analytical result for the transmission
through the closed ring, equation (20), are required to fit the
measured conductance of an open ring to an ideal form of the
transmission similar to that described above in equation (19).
The factor, β , can then be determined from such a fit, but
Aharony et al [11, 21] make the point that in an open
AB interferometer with an embedded QD, the value of the
parameter β is only equal to αQD under certain conditions
related to the details of the couplings to the extra terminals.
In particular, they propose that if the AB ring is opened by
moderate coupling to many extra terminals (‘combs’) placed
around the ring, then it is possible to have αQD = β . If a loss
channel is attached directly to the QD (as in our three-terminal
case), Aharony et al find that β cannot be matched to αQD,
since β then changes by less than π across the resonance, while
αQD varies by π . This diminishing of the change in the phase
factor β for loss directly from the QD suggests that β is in
this case more closely characteristic of the transmission phase
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Figure 8. Transmission and AB oscillation amplitude and phase as a
function of energy for the open ring (Vd = 0.3). T2 versus E (solid
curve); AB oscillation amplitude (dotted curve); AB oscillation
phase (dashed curve).

change, rather than the AB phase, which varies as does αQD by
π across the resonance, even in an open ring. The transmission
phase change, however, is shown to both soften and diminish
to less than π in magnitude for an open ring with Vd �= 0
(see figure 7). A simple analytical model of the transmission
phase through the AB ring based on the properties of the Fano
resonance in closed and open rings has been published by us in
a recent paper related to this work [16]. This model illustrates
both the phase jump and the softening effect brought on by
coupling to the third terminal as a natural result of the Fano
zero shifting from real to complex values as the ring is opened.

The transmission through a QD in an AB ring (given
by the amplitude of the AB oscillations) has been shown
experimentally to go to zero at the energy of the phase jump
of the AB oscillations. This is seen in [9] to lie between the
energy of the transmission zero and its peak, approximately at
the energy, E = ER , for the observed Fano resonance. Other
work demonstrates that the phase jump in the transmission
through the QD embedded in the two-terminal AB ring occurs
at the transmission resonance peak [29]. This result is also seen
directly in figure 6(b), in which the phase of the AB oscillations
is plotted for the closed ring.

4.4. Tuning the AB phase to the intrinsic phase of the QD

When the ring is opened by allowing coupling to the third
terminal, the intrinsic phase of the QD, αQD, can in principle be
obtained by measuring the phase shift of the AB oscillations,
which is no longer forced by the Onsager relation to be 0
or π . Figure 8 shows plots of the transmission, and the
magnitude and phase of the AB oscillations as a function of
energy, for an open ring with Vd = 0.3. The AB phase
here clearly exhibits the same form as the intrinsic phase
of the QD shown in figure 5. We find that the AB phase
of the open ring can be tuned to match the intrinsic phase
of the two-terminal QD, αQD (or the intrinsic phase of the
three-terminal QD), by varying the degree of coupling to
the third terminal of the AB ring. Figure 9 shows plots of
the AB phase for Vd = 0.3, 0.42, 0.51, 0.6, and 0.7 in
comparison to αQD for the two- and three-terminal QDs. The

Figure 9. Transmission phase and AB oscillation phase plots.
(i) Darker solid curve, transmission phase for a two-terminal QD
(Vd = 0, Vr = 0), representing the intrinsic phase of the QD. The AB
oscillation phase overlaps this curve for Vd = V QD

d = 0.42.
(ii) Lighter solid curve, transmission phase for a three-terminal QD
(Vd = 0.3, Vr = 0). The AB oscillation phase overlaps this curve for
Vd = 0.51. (iii) Dashed curves, AB oscillation phase for Vd = 0.3,
Vd = 0.6, Vd = 0.7 (long dashes, short dashes, dotted, respectively).

AB phase for Vd = 0.42 matches the intrinsic phase of the
two-terminal QD, and overlays αQD in figure 9 (darker solid
curve). An analytical solution for this particular value of Vd

which tunes the AB phase to match αQD is given below. At
this specific value of the Vd, called V QD

d , the loss current
from the QD through the third terminal provides the conditions
necessary to almost completely cancel the masking effect of
the Onsager relations which force phase rigidity in a closed
AB interferometer with current conservation. The open ring
with Vd = V QD

d effectively acts like an ideal two-terminal AB
interferometer in which the restrictive conditions on the AB
phase due to current conservation and time-reversal symmetry
are nullified, thus allowing the intrinsic phase contribution of
the QD to be directly determined from the AB phase of this
device. V QD

d is found by analytically solving for the value of
Vd which causes the AB phase to match αQD at a particular
value of energy between E = 0 and ±2V0. The particular
value of energy chosen is E0, which is the energy at which
the Fano zero crosses the real energy axis at a specific value
of magnetic flux (related to the AB phase) for a given set of
coupling parameters. E0 and the specific value of flux are
found in terms of the coupling parameters from equation (18)
[16]. Solving for the value of Vd = V QD

d which gives a
match between the AB phase and αQD(E) at E = E0 yields
V QD

d = √
2V1. Since the form of the AB phase as a function

of E is very close to αQD(E), if these functions match at
three points (E = 0, E = ±2V0, and E = E0), they
closely match at all points in the allowed energy window
(−2V0 � E � 2V0), especially for small V1 or for Vr � V1.
Small V1 provides greater confinement for the electrons in the
QD, and Vr � V1 guarantees that the arm of the AB ring
containing the QD is not bypassed to too great an extent by
the reference arm. Both of these conditions are necessary
for the phase of the AB oscillations to sufficiently reflect the
intrinsic phase contribution of the QD. In general, for a QD
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defined by a given confinement parameter, V1, the intrinsic
phase of this QD will closely match the AB phase of the three-
terminal interferometer in which it is embedded if Vr � V1, and
Vd = V QD

d = √
2V1. For V1 = 0.3, V QD

d = 0.424, which gives
the overlapping curves for the AB phase and αQD(E), shown in
figure 9. Additionally, by further increasing Vd the AB phase
can be made to match the intrinsic phase of the three-terminal
QD, shown in figure 9 with the dotted curves for Vd = 0.51.
This value of Vd can be determined empirically by adjusting Vd

until the AB oscillation magnitude flattens out across E = 0.
(The local minimum of the AB oscillation magnitude seen in
figure 8 disappears for Vd � 0.51.)

In order to experimentally test the effect of nullifying the
multiple reflections through the ring and QD, it would perhaps
be desirable to fabricate an AB interferometer with smoothly
tapering input and output Y-junctions in which single-mode
propagation dominated without multiple reflections. The
transmission and phase behavior of such a device should more
closely match that of an ideal Mach–Zehnder interferometer,
without the complicating effects of multiple reflections through
the QD.

5. Conclusion

Using the exactly solvable formalism of the tight-binding
model, we have presented analytical solutions for the
transmission through an isolated two- and three-terminal QD
and for a QD embedded in one arm of a two- or three-terminal
AB interferometer. In the AB ring, coupling to the third
terminal shifts the zero of the Fano transmission resonance
into the complex energy plane. However, a unique interplay
between the flux through the ring and coupling to the third
terminal opens up a regime of parameter space where the
Fano zero can be returned to the real energy axis even for the
open AB ring. A critical maximum value of the third-terminal
coupling parameter exists, however, above which there is no
value of flux which can bring the Fano zero back to the real
energy axis.

The exact analytical solutions also allow comparison of
the behavior of the transmission phase to that obtained from a
simple model based on the generic form of the Fano resonance.
As the coupling to the third terminal is increased from zero,
the phase jump seen at the resonance diminishes and softens.
Additionally, by tuning the coupling to the third terminal of
the AB ring, the phase of the AB oscillations can be made to
match the intrinsic phase of the QD. By this method, the three-
terminal AB ring with an embedded QD could be designed to
experimentally obtain the intrinsic phase of the QD.
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